1. Consider the data on x taking the values $0,2,4,8 \ldots 2^{n}$ with frequencies ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots,{ }^{n} C_{n}$ respectively. If the mean of this data is $728 / 2^{\mathrm{n}}$, then n is equal to \qquad .
2. If both the mean and the standard deviation of 50 observations $x_{1}, x_{2}, \ldots ., x_{50}$ are equal to 16 , then the mean of $\left(x_{1}-4\right)^{2},\left(x_{2}-4\right)^{2}, \ldots,\left(x_{50}-4\right)^{2}$ is :
(a) 400
(b) 380
(c) 525
(d) 480
3. If $\sum_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$, then the standard deviation of n observation x_{1}, x_{2}, $\ldots \ldots . x_{n}$ is
(a) $a-1$
(b) $n \sqrt{a-1}$
(c) $\sqrt{n(a-1)}$
(d) $\sqrt{a-1}$
4. The mean and variance of 7 observations are 8 and 16 , respectively. If five observations are 2,4 , $10,12,14$, then the absolute difference of the remaining two observations is :
(a) 1
(b) 4
(c) 2
(d) 3
5. If the mean and the standard deviation of the data $3,5,7, a, b$ are 5 and 2 respectively, then a and b are the roots of the equation :
(a) $x^{2}-10 x+18=0$
(b) $2 \mathrm{x}^{2}-20 \mathrm{x}+19=0$
(c) $x^{2}-10 x+19=0$
(d) $x^{2}-20 x+18=0$
6. The mean and variance of 8 observations are 10 and 13.5 , respectively. If 6 of these observations are $5,7,10,12,14,15$, then the absolute difference of the remaining two observations is :
(a) 9
(b) 5
(c) 3
(d) 7
7. If a variance of the following frequency distribution :

Class	$10-20$	$20-30$	$30-40$
Frequency	2	x	2

is 50 , then x is equal to \qquad -.
8. For the frequency distribution:

Variate $(\boldsymbol{x}):$	x_{1}	x_{2}	$x_{1} \ldots x_{15}$
Frequency $(f):$	f_{1}	f_{2}	$f_{3} \ldots f_{I S}$

(a) 4
(b) 1
(c) 6
(d) 2
9. Let $x_{i}(1 \leq i \leq 10)$ be ten observations of a random variable X. If $\sum_{i=1}^{10}\left(x_{i}-p\right)=3$ and $\sum_{i=1}^{10}\left(x_{i}-p\right)^{2}=9$ where $0 \neq p \neq \in R$, then the standard deviation of these observations is:
(a) $\sqrt{\frac{3}{5}}$
(b) $4 / 5$
(c) $9 / 10$
(d) $7 / 10$
10. Let $X=\{x \in N: 1 \leq x \leq 17\}$ and $Y=\{a x+b: x \in X$ and $a, b \in T, a>0\}$. If mean and variance of elements of Y
are 17 and 216 respectively then $a+b$ is equal to :
(a) 7
(b) -7
(c) -27
(d) 9
11. If the variance of the terms in an increasing A.P., $b_{1}, b_{2}, b_{3} \ldots . ., b_{11}$ is 90 , then the common difference of this A.P. is \qquad .
12. Let the observations $x_{i}(1 \leq \mathrm{i} \leq 10)$ satisfy the equations, $\sum_{i=10}^{10}\left(x_{i}-5\right)=10$ and $\sum_{i=1}^{10}(x i-5)^{2}=40$ If a, and b are the mean and the variance of the observations, $x_{1}-3, x_{2}-3, \ldots, x_{10}-3$, then the ordered pair (a, b) is equal to:
(a) $(3,3)$
(b) $(6,3)$
(c) $(6,6)$
(d) $(3,6)$
13. The mean and the standard deviation (s.d.) of 10 observations are 20 and 2 respectively. Each of these 10
observations is multiplied by p and then reduced by q, where $p \square \square 0$ and $q \square 0$. If the new mean and new s.d.
become half of their original values, then q is equal to:
(a) -5
(b) 10
(c) -20
(d) -10
14. The mean and variance of 20 observations are found to be 10 and 4 , respectively. On rechecking, it was found
that an observation 9 was incorrect and the correct observation was 11 . Then the correct variance is:
(a) 3.99
(b) 4.01
(c) 4.02
(d)
3.98
15. If the variance of the first n natural numbers is 10 and the variance of the first m even natural numbers is 16 , then
$m+n$ is equal to \qquad .
16. If the mean and variance of eight numbers $3,7,9,12,13,20, x$ and y be 10 and 25 respectively, then $x \times y$ is equal
to \qquad _.
17. If the data $x_{1}, x_{2}, \ldots \ldots, x_{10}$ is such that the mean of first four of these is 11 , the mean of the remaining six is 16 and the sum of squares of all of these is 2,000 ; then the standard deviation of this data is :
(a) $2 \sqrt{2}$
(b) 2
(c) 4
(d) $\sqrt{2}$

Answer key
1.(6.00) 2.(a) $3 .(\mathrm{d}) \quad$ 4.(c) $\quad 5 .(\mathrm{c}) \quad 6 .(\mathrm{d}) \quad 7 .(4) \quad$ 8.(c) $\quad 9 .(\mathrm{c}) \quad 10 .(\mathrm{b}) \quad 11 .(3) \quad 12 .(\mathrm{a})$
13.(c) 14.(a) 15.(18) 16.(52)17.(b)

